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Boundary limitation of wave numbers in Taylor-vortex flow
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~Received 15 April 1998!

We report experimental results for a boundary-mediated wave-number-adjustment mechanism and for a
boundary-limited wave-number band of Taylor-vortex flow~TVF!. The system consists of fluid contained
between two concentric cylinders, with the inner one rotating at an angular frequencyV. As observed previ-
ously, the Eckhaus instability~a bulk instability! is observed, and limits the stable wave-number band, when
the system is terminated axially by two rigid, nonrotating plates. The bandwidth is then of ordere1/2 at small
e (e[V/Vc21), and agrees well with calculations based on the equations of motion over a widee range.
When the cylinder axis is vertical and the upper liquid surface is free~i.e., an air-liquid interface!, vortices can
be generated or expelled at the free surface because there the phase of the structure is only weakly pinned. The
band of wave numbers over which Taylor-vortex flow exists is then more narrow than the stable band limited
by the Eckhaus instability. At smalle the boundary-mediated bandwidth is linear ine. These results are
qualitatively consistent with theoretical predictions, but to our knowledge a quantitative calculation for TVF
with a free surface does not exist.@S1063-651X~98!07209-2#

PACS number~s!: 47.54.1r, 47.20.2k, 47.32.2y
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I. INTRODUCTION

Many physical systems will undergo a transition from
spatially uniform state to a state with spatial variation wh
they are driven sufficiently far from equilibrium by an exte
nal stress. This spatial variation is known as a ‘‘pattern
Typical of such systems are Rayleigh-Be´nard convection
~RBC! @1# and Taylor-vortex flow~TVF! @2#. The present
paper will focus on TVF, which is a flow pattern of a flui
confined between two concentric cylinders. When rotat
the inner cylinder about its axis, the initial instability whic
occurs as the angular frequencyV is increased is a transitio
at Vc from a uniform ~circular Couette! state to the TVF
state. TVF is periodic in the axial direction, and has f
rotational symmetry in the azimuthal direction. In the ax
direction the pattern is characterized by a wave numbek
52p/l, wherel is the wavelength. One wavelength co
sists of a vortex pair, since adjacent vortices have oppo
circulation. ForV.Vc , TVF solutions to the equations o
motion exist over a band of wave numbers which depends
e[V/Vc21 and on the boundary conditions in the ax
direction.

We refer to patterns with nontrivial variation only in on
direction ~such as TVF! as one-dimensional patterns. It
well known that the band of wave numbers of on
dimensional patterns of finite length, with the pattern ph
pinned at each end, is limited by the marginal curve wh
perturbations of the uniform state first acquire a posit
growth rate. In TVF with rigid nonrotating ends, a larg
amplitude Ekman vortex forms adjacent to each end an
associated with phase pinning. However, the resulting s
tions of such a system are not all stable. The~more narrow!
stable band of states is limited by the long-wavelength E
haus instability@3–14#. The Eckhaus instability is a bulk
instability which manifests itself in the system interior whe
one pattern wavelength~one pair of Taylor vortices! is either
PRE 581063-651X/98/58~3!/3168~7!/$15.00
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gained or lost, depending on whetherk is larger or smaller
than the stable band limited bykE(e). One of the successe
in the study of pattern-forming systems is the agreement
tween the calculated and measuredkE(e) for TVF, which
has been found with three different ratios of the cylind
radii @4,7,9,10,14#.

Theoretically, phase pinning~and thus the Eckhaus insta
bility ! at smalle is expected when the boundary conditio
at the system endsz50,L correspond to a large amplitud
A(0)5A(L)5A0 of the velocity field, sayA05O(1), while
in the system interior the amplitudeA(z) is small, say
O(e1/2). This situation closely corresponds to a TVF syste
with rigid ends, where the influence of the Ekman vortex c
be approximated by this boundary condition@15,7,10#. The
Eckhaus-stable band then has the same width as the ba
stable states for the infinite system@16#, but the number of
states is finite since only discrete states with an integer n
ber of vorticesN52L/l5Lk/p can occur.

It was shown theoretically by Cross and co-worke
@17,18#, and discussed from various viewpoints by othe
@19–23,5,6,11#, that a reduction ofA0 to A05l̃e1/2 with
l̃&O(1) leads to a qualitative change of the width of t
wave-number band over which solutions exist. Solutions c
responding to such boundary conditions are known as ty
solutions@21#. The limit of their existence is determined by
phase slip at the boundary. The solutions appear to be st
over their entire existence range. The band limitskb

1 andkb
2

at large and smallk, respectively, vary linearly withe when
e is small, yieldingkb

25l2e and kb
15l1e, wherel6 are

constants which depend on the particular system. Thus a
matic reduction of the band at smalle from O(e1/2) ~in the
Eckhaus case! to O(e) is predicted. Solutions correspondin
to l̃.O(1) are called type II solutions@21#; they exist over
a wide range inside the marginal-stability curve and
stable over the entire Eckhaus-stable band.
3168 © 1998 The American Physical Society
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PRE 58 3169BOUNDARY LIMITATION OF WAVE NUMBERS IN . . .
The reduction of the band and the occurrence of ph
slip near the sidewall was verified by experiments on R
@24,25#, on the buckling of plates subjected to a compr
sional stress@26,27#, and on Be´nard-Marangoni convection
@28#. However, this early work was mostly qualitative an
for relatively large e. Qualitative confirmation of a
boundary-reduced wave-number band was also obta
from numerical calculations for narrow RBC systems of
nite length@29,30#.

More recently, Mao et al. investigated boundary
limitation of the wave-number band in a long, narrow, a
very thin ~two-dimensional! film of a smectic-A liquid crys-
tal which undergoes convection when driven by an elec
field. @31# The convection rolls form a one-dimensional pa
tern. Measurements showed that the flow velocity of the r
is strongly reduced near the ends of the system, sugge
that the boundary conditions correspond to a value ol̃
much less than 1. Thus one would expect the bound
mediated mechanism to come into play. Indeed, it was
served in the experiment that convection rolls were alw
lost or gained at the system ends and never in the inte
For this system the location of the Eckhaus-stability lim
was estimated from the location of the neutral curve, wh
in turn was calculated from the equations of motion@32#.
Thus a comparison of the reduced boundary-limited b
with the approximate location of the wider Eckhaus band
the infinite system is possible. The results include data o
the range 0,e,1. They convincingly demonstrate the r
duced bandwidth, and are consistent with a linear dep
dence ofkb

62kc on e in the rangee,1 (kc is the critical
wave number which forms fore50).

Here we report experimental results for the wave-num
band of TVF. Using rigid, nonrotating ends, we reproduc
the well known Eckhaus mechanism and stability ran
@7,8#. We then investigated a system with a free liquid-
interface which terminated the fluid axially in an appara
oriented vertically with its axis. Since the influence of t
viscosity of air and surface-tension effects presumably w
small, one would expect such a surface to be approxima
reasonably well by free-slip boundary conditions in t
theory, and these would lead to an amplitudeA0 equal to that
in the bulk ~i.e., l̃.1). Semiquantitative verification of thi
was obtained from the flow visualizations to be presen
below. Thus we expect this TVF case to be on the borderl
where it would be difficult to saya priori whether the ob-
servable band is limited by the Eckhaus~bulk! instability or
whether the existing band is limited by phase slip at
boundary. We demonstrated experimentally that the f
liquid-air interface provides sufficiently weak phase pinni
to permit phase slip. Thus vortices were gained or lost at
surface rather than in the bulk. This mechanism led t
narrower band than the Eckhaus-stable band, with bou
aries atkb

6(e) which at smalle were linear ine as expected
theoretically. However, these boundaries did not p
throughkc ande50. Instead there remained a small gap
is not clear whether this gap was due to the finite length
our system@16# or whether it was associated with the ma
ginal boundary conditions (l̃.1).

Although it is peripheral to the main purpose of this p
per, we note that the radial velocity component at the f
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surface was almost always found to be in the outward dir
tion. This is consistent with free-slip boundary condition
where the centrifugal force is unopposed. It differs from t
rigid boundary near which normally the flow is inward, b
cause the rigid boundary condition of vanishing velocity ca
not sustain the radial pressure gradient required by outw
flow. Thus, with one rigid boundary and one free bounda
our system normally contained an odd numberN of vortices.
However, anomalous states with inflow at the free surfa
~and thus an evenN) were also encountered on rare occ
sions.

In Sec. II of this paper, we describe the experimental
paratus and procedures, and the methods of analysis w
were used. The experimental results for the instabi
mechanism and the stability band are presented in Sec. II
brief discussion of the results and some ideas for future w
follow in Sec. IV.

II. APPARATUS AND PROCEDURES

A schematic diagram of the apparatus is shown in Fig
The Couette-Taylor column was similar to the one describ
in Ref. @7#. It consisted of two concentric, straight cylinder
The outer one was made of plexiglass. The inner cylin
had an aluminum core which was clad with delrin. The ra
were r 1518.68 mm andr 2525.44 mm, yielding a radius
ratio h[r 1 /r 250.734 and a radial gapd[r 22r 1
56.76 mm. A computer-controlled stepper motor rotat
the inner cylinder with an angular frequencyV52p f , and
the outer cylinder was at rest. The system was tempera
controlled to about620 mK by water from a Neslab refrig
erated circulator. This water flowed through a transpar
jacket surrounding the outer cylinder.

The gap between the cylinders contained two nonrota
delrin collars, one located near each end of the appara
The collars had a flat surface facing the fluid and orthogo
to the cylinder axis. The axial position of the upper coll
was adjustable by means of two 2.5-mm-diameter stainle
steel rods which passed through seals in the upper end ca
the apparatus and attached to the collar. We were abl
create either a rigid or a free~liquid/air! surface at the top of
the column by adjusting the liquid level and/or the top col

FIG. 1. Schematic diagram of the apparatus.
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3170 PRE 58MARCUS LINEK AND GUENTER AHLERS
position. This also allowed for changes of the aspect ra
L[H/d, whereH is the distance in mm between the rig
boundaries or between the bottom boundary and the
surface. Typically, we usedL.40–50.

The fluid level in the Taylor column could be adjusted
changing the vertical position of the reservoir shown in F
1. This reservoir was attached to a vertical translation st
which could be moved with a second computer-control
stepper motor.

For the working fluid we used a mixture of 50% glycero
48% water, and 2% Kalliroscope for flow visualization. Th
mixture had a kinematic viscosity of about 0.07 cm2/s,
yielding a gap-diffusion timetn[d2/n.7 s. The axial dif-
fusion timeL2tn then is about 4 h for the typical valuesL
.45 used by us. Typical axial equilibration times required
reach an axially uniform state are determined by phase
fusion and depend on the wave number. For smalle and k
near kc they are expected@33,34# to be about 0.2L2tn

.50 min. Near the Eckhaus boundary they are expecte
become much longer because the phase diffusivity vanis
at that boundary. We depended upon the measured time
lution of the phase of our system to decide whether the d
were quasistatic. Amplitude equilibration after a change of
is generally much faster and typically occurs on a time sc
of t0tn /e with @35# t050.076, which fore*1022 is only
about a minute.

A CCD camera was used to digitally record an image
the Taylor-vortex pattern. Typically, we took images with
width ~in the azimuthal direction! of 30 pixels and a length
~in the axial direction! of 534 pixels. An example is shown i
Fig. 2~a!. Division by a reference image taken below t
onset of TVF was used to reduce inhomogeneities due
uneven illumination. The pixels were averaged over
width to produce a one-dimensional record of the TVF st
as a function of the axial position. Temporal sequences
such one-dimensional records were used to prepare a
dimensional space-time ‘‘image’’ which showed the evo
tion of the TVF state as a function of time and/or inne
cylinder frequency~see for instance Figs. 3, 5, and 6 below!.
In order to avoid effects associated with the cylinder en
~such as the strong Ekman vortex at the rigid bottom bou
ary!, only a central segment of length 256 pixels of ea
one-dimensional record was used for further analysis.
section used is shown in Fig. 2~a! by the black bar. An ex-
ample is plotted in Fig. 2~b!. The variation of the signa
amplitude with axial position is due primarily to effects a
sociated with uneven illumination which remained even a
image division.

The data were multiplied by a Hanning window functio
and then Fourier transformed. The square of the modulu
such a transform is shown in Fig. 2~c! as a function of the
wave numberk. It is apparent that the second harmonic
significantly stronger than the fundamental. This is expec
from the Kalliroscope flow visualization, since outflow an
inflow boundaries of vortices have a similar appearance.
computed the first moment of the second harmonic, us
typically only the three points nearest the maximum, to
termine the wave number of the TVF structure. To determ
the onset frequencyf c , we also determined the power und
the second-harmonic peak.

In order to determinef c , a TVF state was usually pre
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pared first by slowly increasing the cylinder frequencyf to a
value above the critical valuef c , and by waiting for equili-
bration of this state. Thenf was stepped down in incremen
of 2 mHz, with an equilibration time of 100 to 600 s afte
each step. On average this corresponds to a ramp rab
[(tn / f c)(d f /dt)&1024 ~heret is in s!. The image in the top
of Fig. 3 shows the evolution of the axially-varying amp
tude for the section of such a run very nearf c as a function
of time and thus of frequency. Here the individual tim
frequency steps are resolved. For this case there was a
boundary at each end. The Ekman vortices and their in
ence on the internal TVF structure are apparent. Howe
the system was sufficiently long@7# that the ends did no
significantly influence the determination off c in the interior.
The middle part of Fig. 3 gives the power of the seco
harmonic of the Fourier transform~determined as discusse
above! as a function off over the same range as the ima
above it. For the example in the figure, it is easy to see
f c564662 mHz. Increasing the frequency from belowf c
gave the same results within the quoted uncertainties.
bottom part of Fig. 3 shows the wave number derived fro
the same run. One can see thatk is determined unambigu
ously by the data at all frequencies greater thanf c .

Two examples of an experimental protocol designed
determine the boundary-selected stability limits are illu
trated in Fig. 4. When the large-~small-! k stability boundary
was to be investigated, a liquid column with a free surfa
and with a large~small! L5L0 was first prepared. The ex
amples in Fig. 4 correspond toL0561 (37). An initial state
with k nearkc was then prepared by slowly rampingf from

FIG. 2. Illustration of the image analysis. The top is an exam
of a single image~a ‘‘snapshot’’!. The middle is a plot of the image
amplitude, averaged in the narrow~azimuthal! direction, as a func-
tion of the axial direction in units of camera pixels. The bottom
the Fourier transform of the amplitude~after the length was scale
by the gapd), and shows the wave numbers of the Taylor vortic
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PRE 58 3171BOUNDARY LIMITATION OF WAVE NUMBERS IN . . .
below to abovef c . A state withN561 (37) vortices re-
sulted. Next the frequency was increased relatively quic
to 2–4 timesf c ~points A1 and A2 in the figure!, generally
without changing the number of vortices. The wave num
of the system was then adjusted to a desired starting v
@point B1 (B2) in the figure# by lowering~raising! the liquid
level in the TVF column. This was accomplished by decre
ing ~increasing! the vertical reservoir position. When the re

FIG. 3. An illustration of the determination ofVc . The top
image is a space-frequency~or time! plot with an expanded fre-
quency scale near onset. The middle gives the signal power d
mined from the Fourier transform~see Fig. 2!. The bottom shows
the corresponding wave vector determinations.
y

r
ue

-

ervoir position was changed sufficiently slowly, no loss
gain of vortices occurred provided the structure remain
well within the stable wave-number band. Typically w
changed the reservoir position at the ratedz/dt
.1023 cm/s, corresponding to (tn /d)(dz/dt).1022. Typi-
cally 1 or 2 h were required to reach pointB1 or B2. In the
examples of Fig. 4, B1 (B2) corresponded to L
545.9 (51.3).

Having established statesB1 or B2, the frequency was
reduced in steps of 2 mHz at time intervals of typically 1
to 600 s, corresponding to effective ramp rates nearb5
21024. Before each new step, an image was taken. T
circles in Fig. 4 illustrate idealized sequences of instabi
points which are encountered in this process. Actual exp
mental runs will be illustrated in Sec. III by space-time im
ages and by plots of the wave number as a function of tim
frequency.

The procedure for determining the Eckhaus boundary w
similar, except that at the state indicated byB1 andB2 in Fig.
4 the rigid collar bounded the fluid at the top. Sudden-s
protocols@36# were used as well at times to quickly prepa
initial states withk different fromkc .

III. RESULTS

Figure 5 gives space-time images which illustrate the t
different mechanisms. The left part is a run with rigid to
and bottom ends, and withk,kc . The Ekman vortices and
their influence on the amplitude of the Taylor vortices in t
interior but near the two ends are apparent. The instab
mechanism led to the gain of vortex pairs in the syst
interior. Three transitions are clearly visible, although t
third was almost immediately followed in the sample inter
by the axially-uniform Couette state.

A similar experiment with a free surface yielded a ve
different result. This is illustrated in the right part of th
figure. In this case the original state~near the right of the
image! hask.kc . Five or more transitions can be seen, b
vortex pairs were lost at the free top surface rather than in
interior.

The phase slip at the free surface is illustrated in grea
detail in Fig. 6. The left example is fork,kc . In this case
vortices were added at the free surface, so as to increask.
The right one is fork.kc where vortices were expelled so a
to decreasek. Figure 6 also illustrates the nature of th

er-

FIG. 4. Illustration of the experimental protocol~see text for
details!. The solid line is a smooth curve passing through our res
for the boundary-mediated stability limit. The dash-dotted curve
the Eckhaus stability limit.
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3172 PRE 58MARCUS LINEK AND GUENTER AHLERS
boundary condition at the free surface. The TVF amplitud
essentially constant as a function ofz, with at most a very
small enhancement~depression! visible for k,kc (k.kc)
as the Couette state is entered. The very small differenc
any, between the two cases shown probably is due to var
conditions with the height of the cylinder surfaces, rath
than to a dependence onk.

Figure 7~a! gives the wave number as a function off for
a run which started withk,kc . The parameters are thos
used in Fig. 4 to illustrate the small-k experiments. HereL
551.3, and initially@at the right of Fig. 7~a!# there wereN
537 vortices. A gain of a vortex pair corresponds todN
52 and should yielddk5(p/L)dN50.122 if the anomalous
width of the Ekman vortex at the bottom boundary is n
glected. The average measured step size was alsodk
50.122, consistent with the expected effect of a pair gain
is clear from Fig. 7~a! that most of the transitions are pa
gains, thus maintaining an odd number of vortices in
system. This is consistent with the preference for outflow
the free surface and inflow at the rigid surface. Howev
there are occasional exceptions. One of them can be se
Fig. 7~a! near f 5722 mHz, where two successive singl
vortex gains (N547 to 48 to 49! resulted in smaller value
dk.0.058.

It can be seen that the system equilibrates surprisingly

FIG. 5. Illustration of the two mechanisms for wave-numb
limitation.

FIG. 6. Detailed view of the losses~right image! and gains~left
image! of vortices at the free upper surface.
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after each transition. This is qualitatively consistent with c
culations of the phase diffusivityD(k,e), which show a
strong asymmetry as a function ofk at constante with a
maximum at relatively smallk,kc @37#. Equilibration is in-
deed much slower fork.kc , as can be seen in Fig. 7~b!. For
this caseL545.9 andN561 at the beginning of the run
After each transition there is a noticeable slow relaxation
the average wave number in the section of the system u
for the analysis. Nonetheless, reasonable estimates of the
bility boundary can be obtained from the experiment. In t
case the steps have an average valuedk50.141. For pair
losses and thisL one would expect 0.136, in good agreeme
with the experiment.

Figure 8 summarizes all our determinations of the sta
ity boundary with a free surface as solid circles. They we
obtained from numerous runs with different values ofL over
a time period of about four months, each run giving a fe
points on one of the boundaries. They scatter somew
more than we anticipated on the basis of our resolution foe

r

FIG. 7. The wave-numberk as a function of the inner-cylinde
frequency f . Temporally, the experiment proceeded from rig
~large f ) to left ~small f ). ~a! k,kc . ~b! k.kc .

FIG. 8. Results for the wave-number band limits in the prese
of a free boundary~solid circles!. Also shown~open circles! are the
results from Ref.@7# for the Eckhaus boundary and the theoretic
Eckhaus boundary~solid line! from Ref. @8#.
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PRE 58 3173BOUNDARY LIMITATION OF WAVE NUMBERS IN . . .
and k. We believe that there may be a contribution to t
scatter from irreproducibilities from run to run in the natu
of the air-liquid interface. This interface could, for instanc
be influenced by contaminations of the cylinder surfaces
the Kalliroscope, and this contamination could vary withL;
but we do not have any direct information about this. F
reference, we show the theoretical Eckhaus boundary
solid line and the experimental determinations of the E
haus boundary in Ref.@7# as open circles. Regardless of the
scatter, it can be seen that the free-surface-limited data
well inside the Eckhaus-stable band over the entiree-range
of the experiment.

At small e the data are consistent with a linear depe
dence one, as shown by the dashed lines in the figure. T
small-e portion of the results is shown once more on e
panded scales in Fig. 9. The linear dependence ofks upone
is clearly seen. The slopeskcde/dkb

6 of the boundaries are
within error symmetric and equal to about61.7. However,
the straight lines through the data do not pass through
origin. Instead, there is a small gap nearkc which reaches
approximately from dk2/kc520.01 to dk1/kc50.03.
Whereas the widthdk1/kc2dk2/kc.0.04 of the gap has an
uncertainty of only about 0.01, the values ofdk1/kc and
dk2/kc themselves are less well known because of poss
small systematic errors ink. Thus a gap symmetric aboutkc
is not ruled out.

IV. DISCUSSION

We presented experimental results which demonstrate
TVF terminated at one end by a liquid-air interface has
band of solutions which is more narrow than the Eckha
stable band of the system with rigid nonrotating ends. T
bandwidth is limited by phase slip at the free surface.
smalle, the band limitskb

6(e) vary linearly withe. This is in
agreement with general theoretical predictions, but to
knowledge specific calculations for TVF have not been c
ried out. The boundarieskb

6(e) do not pass throughkc at e
50, and instead leave a small wave-number gapdk1

FIG. 9. Results at smalle for the wave-number band limits in
the presence of a free boundary~solid circles!. Also shown~open
circles! are the results from Ref.@7# for the Eckhaus boundary an
the theoretical Eckhaus boundary~solid line! from Ref. @8#.
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2dk2 at the neutral curve which was not theoretically pr
dicted.

At this point we can only speculate about the origin of t
gap. Perhaps it is asociated with the particular boundary c
ditions which pertain to our physical system. As discuss
above, we expect TVF with a free surface to be at the b
derline between systems for which the solution band is l
ited by phase slip at the boundary~type I solutions! and those
which have stable solutions over the entire bulk Eckha
instability ~type II solutions!. Perhaps the transition from
type I to type II solutions takes place by a gap opening n
kc , although a more likely course of events would invol
l6 going to zero~i.e., a vanishing of the slopes of th
straight lines in Fig. 9!.

Perhaps a more likely explanation can be found in
finite length of the system. For the Eckhaus boundary of
finite system it is known that a gap opens up@5,9# nearkc ,
which, for periodic boundary conditions@5#, has a width
6dk/kc56p/Lkc . Thus any state with2p/Lkc,(k
2kc)/kc,p/Lkc is stable all the way down to the neutr
curve where its amplitude vanishes. ForL.50 this gap in
the Eckhaus boundary is shown in Fig. 9 by the two sh
dashed lines. One sees that the gapdk6/kc derived from our
data for kb

6(e) is of the same size; but as yet there is
theoretical prediction for finite-size effects onkb

6(e).
Finally we comment on possible future experimen

Clearly the small-e, small-(k2kc) range needs to be exam
ined by more detailed experiments to gain further insight i
the nature of the gap discussed above. In part this can
done by varying the system length to see whether the ga
proportional toL21. Another interesting possibility for fu-
ture work will be an attempt to alter the boundary condition
thus effectively changingl̃. It may be possible to do this by
placing a less dense but perhaps more viscous fluid above
glycerol-water solution. Since the flow field of the Coue
state is independent of the viscosity, one would not expec
Ekman vortex to be generated. However, the larger visco
would lead to subcritical conditions in the added fluid wh
V5Vc in the working fluid. The ensuing Couette state, l
cated physically above the TVF state, should then reduce
TVF amplitude. This would correspond tol̃,1 and should
yield a more narrow range of solutions~presumably larger
ul6u) than those found in the present work.
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